Shear stress-induced mitochondrial biogenesis decreases the release of microparticles from endothelial cells.
نویسندگان
چکیده
The concept of enhancing structural integrity of mitochondria has emerged as a novel therapeutic option for cardiovascular disease. Flow-induced increase in laminar shear stress is a potent physiological stimulant associated with exercise, which exerts atheroprotective effects in the vasculature. However, the effect of laminar shear stress on mitochondrial remodeling within the vascular endothelium and its related functional consequences remain largely unknown. Using in vitro and in vivo complementary studies, here, we report that aerobic exercise alleviates the release of endothelial microparticles in prehypertensive individuals and that these salutary effects are, in part, mediated by shear stress-induced mitochondrial biogenesis. Circulating levels of total (CD31(+)/CD42a(-)) and activated (CD62E(+)) microparticles released by endothelial cells were significantly decreased (∼40% for both) after a 6-mo supervised aerobic exercise training program in individuals with prehypertension. In cultured human endothelial cells, laminar shear stress reduced the release of endothelial microparticles, which was accompanied by an increase in mitochondrial biogenesis through a sirtuin 1 (SIRT1)-dependent mechanism. Resveratrol, a SIRT1 activator, treatment showed similar effects. SIRT1 knockdown using small-interfering RNA completely abolished the protective effect of shear stress. Disruption of mitochondrial integrity by either antimycin A or peroxisome proliferator-activated receptor-γ coactivator-1α small-interfering RNA significantly increased the number of total, and activated, released endothelial microparticles, and shear stress restored these back to basal levels. Collectively, these data demonstrate a critical role of endothelial mitochondrial integrity in preserving endothelial homeostasis. Moreover, prolonged laminar shear stress, which is systemically elevated during aerobic exercise in the vessel wall, mitigates endothelial dysfunction by promoting mitochondrial biogenesis.
منابع مشابه
In vivo shear stress determines circulating levels of endothelial microparticles in end-stage renal disease.
Shear stress is a major determinant of endothelial apoptosis, but its role in the in vivo release of shed membrane microparticles by endothelial cells remains unknown. Thus, we sought to evaluate the possible relationship between circulating endothelial microparticle levels and laminar shear stress in end-stage renal disease patients with high cardiovascular risk, whose levels of endothelial mi...
متن کاملExercise-Mediated Wall Shear Stress Increases Mitochondrial Biogenesis in Vascular Endothelium
OBJECTIVE Enhancing structural and functional integrity of mitochondria is an emerging therapeutic option against endothelial dysfunction. In this study, we sought to investigate the effect of fluid shear stress on mitochondrial biogenesis and mitochondrial respiratory function in endothelial cells (ECs) using in vitro and in vivo complementary studies. METHODS AND RESULTS Human aortic- or um...
متن کاملInhibitory effect of the interferon-beta on the release of endothelial cell derived microparticles in patients with multiple sclerosis
Abstract Introduction: Increased levels of microparticles (MPs) have been reported in many autoimmune diseases such as multiple sclerosis (MS). In MS, endothelial cells release MPs from their membranes following the activation of lymphocytes and the production of inflammatory cytokines. The aim of this study was to investigate the inhibitory effect of interferon beta (INFβ) on the release of en...
متن کاملDisturbed blood flow acutely induces activation and apoptosis of the human vascular endothelium.
There is strong and consistent evidence from in vitro studies that disturbed blood flow produces a proatherogenic vascular endothelial phenotype. However, data from human studies are lacking. To address this, a 220 mm Hg occlusion cuff was placed on the distal forearm of 10 young, healthy men to induce a localized region of disturbed blood flow in the proximal vasculature for 20 minutes. We hyp...
متن کاملEffect of Vitamin D3 on Mitochondrial Biogenesis in Granulosa Cells Derived from Polycystic Ovary Syndrome
Background: Polycystic ovary syndrome (PCOS) is an endocrine disorder diagnosed by anovulation hyperandrogenism.Hyperandrogenism increases apoptosis, which will eventually disturb follicular growth in PCOS patients.Since mitochondria regulate apoptosis, they might be affected by high incidence of follicular atresia. This may causeinfertility. Since vitamin D3 has been shown to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 309 3 شماره
صفحات -
تاریخ انتشار 2015